
Computer Physics Communications 128 (2000) 565–589
www.elsevier.nl/locate/cpc

M.DynaMix – a scalable portable parallel MD simulation package
for arbitrary molecular mixtures

Alexander P. Lyubartsev, Aatto Laaksonen∗
Division of Physical Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm, Sweden

Received 8 September 1999; accepted 10 November 1999

Abstract

A general purpose, scalable parallel molecular dynamics package for simulations of arbitrary mixtures of flexible or rigid
molecules is presented. It allows use of most types of conventional molecular-mechanical force fields and contains a variety of
auxiliary terms for inter- and intramolecular interactions, including an harmonic bond-stretchings. It can handle both isotropic
or ordered systems. Besides an NVEMD ensemble, the simulations can also be carried out in either NVT or NPT ensembles,
by employing the Nosé–Hoover thermostats and barostats, respectively. If required, the NPT ensemble can be generated by
maintaining anisotropic pressures. The simulation cell can be either cubic, rectangular, hexagonal or a truncated octahedron,
with corresponding periodic boundary conditions and minimum images. In all cases, the optimized Ewald method can be used
to treat the Coulombic interactions. Double time-step or constrained dynamics schemes are included. An external electric field
can be applied across the simulation cell. The whole program is highly modular and is written in standard Fortran 77. It can be
compiled to run efficiently both on parallel and sequential computers. The inherent complexity of the studied system does not
affect the scalability of the program. The scaling is good with the size of the system and with the number of processors. The
portability of the program is good, it runs regularly on several common single- and multiprocessor platforms, both scalar and
vector architectures included. 2000 Elsevier Science B.V. All rights reserved.

PACS:02.70.Ns; 34.20.Gj; 61.20.Ja; 82.20.Wt

Keywords:Parallel algorithms; Molecular dynamics; Computer simulations

PROGRAM SUMMARY

Title of the program:M.DynaMix

Catalogue identifier:ADLW

Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADLW

Computer for which the program is designed and others on which
it has been tested:The program is not designed for any particular

computer. It has been tested on (a) single processor computers: IBM
RISC 600; DEC Alpha; Pentium PC/Linux; Pentium PC/Windows
with PGI (Portland Group) Fortran compiler; (b) parallel systems:
Cray T3E, IBM SP2; Linux SMP; Linux network clusters; (c) vec-
tor processors: Fujitsu VX

Installations: Sample makefiles are provided for the architectures
listed above

Operating systems:UNIX (preferred); Windows 98/NT (not thor-
oughly tested)

∗ Corresponding author. E-mail: aatto@tom.fos.su.se.

0010-4655/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(99)00529-9

566 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

Programming languages:Fortran 77, with a few auxiliary routines
in C

Memory required to execute with typical data:Depends on the size
of the simulated system, simulation parameters and architecture in
hand (some data structures use distributed memory). As an example
for a 10000 atoms system on a single-processor computer, 64 MB is
suggested

Number of processors used:Arbitrary, but effective speedup de-
pends on the communication bandwidth. For parallel computers
with distributed memory (IBM SP2, Cray T3E) very good scaling
is observed up to 32 processors. In general, the scaling properties
increase with the number of particles

Parallelization: MPI protocol

Number of bytes in distributed program, including test data, etc.:
548 659 bytes

Distribution format: tar gzip file

Keywords:Parallel algorithms, molecular dynamics, computer sim-
ulations

Nature of physical problem
Many-body problem with interacting particles. Structural, thermo-
dynamical and dynamical properties of molecular liquids and liq-
uid mixtures, including organic molecules or biomacromolecules as
solutes.

Method of solution
Numerical integration of classical (Newtonian) equations of motion,
optionally modified for constant temperature or/and constant pres-
sure simulations. Forces are calculated from standard molecular-
mechanical force fields.

Restrictions on the complexity of the problem
The principal limitation is the size of the non-bonded neighbor lists,
but it rarely reaches the limits of RAM memory available. In prac-
tice, typical systems consist of about 104 atoms, covered during sev-
eral nanoseconds on modern parallel computers (of Cray T3E, IBM
SP2 type).

Typical running time
Varies greatly depending on the complexity of the problem. Typi-
cally for a system of 10000 atoms, a simulation of 1 nano-second
would take several days of CPU time using 16–32 processors.

LONG WRITE-UP

1. Introduction

Within three decades, computer simulation methods, such as Molecular Dynamics (MD) and Monte Carlo
(MC), have become important computational techniques for studying various types of condensed matter. Besides
computational chemists, many experimentalists now also routinely use molecular simulations in their efforts to
interpret observed data. Not only these computer experiments can provide a link between theory and experiment,
but also provide a way to investigate complex many-body systems when analytical theories fail and experimental
techniques are impossible to use or simply do not exist.

Investigators now routinely simulate molecular systems consisting of some 1000 particles, which in some cases
(e.g., isotropic liquids) are sufficiently large to give a good description of the corresponding macroscopic properties.
For other systems, a considerably larger number of particles is needed in order to describe them in a realistic
way. Inclusion of complex bio- or organic molecules (e.g., carbohydrates, proteins, fragments of nucleic acids
or membranes, etc.), immersed in a solvent will rapidly increase the total number of involved atoms by one or
two, or even more orders of magnitude. Also, the larger the molecular systems grow, the longer simulations are
needed to statistically follow various low-amplitude motions and possible slow conformational transitions. The
recent rapid progress rate towards computer simulations of very much larger molecular systems than was possible
a decade ago, and the possibility to apply more complex molecular models, is set to a large extent by the advances
in microprocessor technology and new computer architectures, in parallel with the development of appropriate
algorithms and software.

Computer simulations of many-particle systems are well suited for parallel computing. There are several ways
to decompose the particle or interaction space into independently treatable parts. However, the optimal parallel
scheme for a particular problem always depends both on the computer architecture in hand and on the system

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 567

under investigation (model, size, type of interactions, etc.). Electrostatic interactions, fast intramolecular motions
due to explicit modeling of the light hydrogens, angle bending and fluctuations of the internal torsional-angle forces
in macromolecules – all these features require their own special treatment in an effectively parallelized molecular
computer simulation code.

Originally, from our own broad needs, we have developed a general purpose molecular dynamics simulation
package, called M.DynaMix to emphasize that it is designed for simulations of arbitrary mixtures of both rigid
and flexible molecules. It employs modern simulation techniques for high-quality simulations: a double time
step algorithm for fast and slow modes, an optimized Ewald method for electrostatic interactions, a constant-
temperature–constant-pressure algorithm. It is not built around any particular force field, but rather can make use
of nearly all available conventional force fields, including AMBER [1], CHARMM [2] or GROMOS [3]. Also, most
water models, rigid or flexible, can be plugged into the simulations of biomolecular systems in aqueous solutions. It
is particularly important to have water models with a proper dielectric constant and diffusion coefficient when used
as a solvent for biological systems. All these features make the code fairly universal and well suitable for simulation
of both simple molecules and complex biological macromolecules. The program is written in standard Fortran 77
and is highly portable, being able to run on any parallel system with the MPI-library installed. Equally important
is that the program is designed to be easily compiled to run on any single-processor computer without the MPI
library. The code is constructed from a large number of modules, and the source code is extensively commented.
Details about the program organization are given below, together with the algorithms used in the parallelization.
The structure of the input files is also given (see sample in Appendix II). Finally, a short user manual is provided.

2. Molecular dynamics simulation method

Concerning details about the basic MD method itself the user is referred, for example, to the textbook by Allen
and Tildesley [10] or the more recent one by Smit and Frenkel [11]. We will only discuss the details and strategies
as implemented in this particular program package.

2.1. Force field

In the conventional molecular dynamics method, all the simulated atoms in the systems move according to the
classical Newtonian equations. The forces acting on the atoms are defined from the gradients of the potential energy
(force field), as functions of the distances between all interaction sites in the system (most often the atoms).

In our program we have implemented a typical core form of a standard force field, compatible with most available
force fields, with the following functional form:

V =
∑

covalent bonds

Kb(r − req)
2

+
∑

covalent angles

Ka(θ − θeq)
2

+
∑

torsional angles

1
2Kt

(
1+ cos(mtφ − γt)

)
+
∑
i<j

{
4εij

[(
σij

rij

)12

−
(
σij

rij

)6]
+ qiqj

rij

}
, (1)

where the first sum runs over all the covalent bonds, the second over all the covalent bond angles, the third over
all the torsional angles and the fourth over all the non-bonded atom pairs.rij is the distance between the atoms
i andj . The cross-terms of the Lennard-Jones parametersσ andε are calculated by the usual Lorentz–Berthelot
combination rules:

568 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

εij = (εiεj)1/2, σij = (σi + σj)/2. (2)

The atoms in a molecular system are considered as non-bonded if they are found in different molecules, or within
the same molecule but separated by three or more covalent bonds. In some cases, those atoms separated by exactly
three covalent bonds, are considered as so called “1–4 interactions”, for which the electrostatic and Lennard-Jones
terms are often scaled by some factor between 0 and 1. This possibility is implemented in our program as well, in
order to allow use of different force fields.

In addition to the standard form of the force field, given above in Eq. (1), several additional potential terms are
available in the package, and these can be used either alone or together with any of the other terms.

These are:
(1) Morse type of potential for covalent bonds:

Vbond=D
(
1− exp(−ρ(r − req))

)
.

(2) MM3 force field [12] type of potential for torsional angles:

Vtors= V1
1+Cos(φ)

2
+ V2

1−Cos(2φ)

2
+ V3

1+Cos(3φ)

2
.

(3) Ryckaert–Bellemans [13] type of potential for torsional angles (intended originally for hydrocarbon chains
and polymers):

Vtors=
5∑
i=1

(
Vi(Cos(φ − 180))i

)
.

(4) Improper torsional angle potential (for covalent bonds junctions) to enhance the planarity of the molecule:

Vimp= Vimp
(ψ −ψeq)

2

2
.

(5) A narrower additional potential well for hydrogen bonds to better control the hydrogen bond distances:

VH-bond=
∑

H-bonds

(
Cij

r12
ij

− Dij
r10
ij

)
.

(6) External electric field alongz-axis, periodically fluctuating in time:

Vext=EextCos(ωt)qi .

(7) Artificial harmonic potential:

Vharm=
∑

some atoms

K(ri − ri0)2,

which can be used to fix a set of chosen atoms in a harmonic potential well of some effective radius. This
may be useful in the simulation of macromolecules, if one wants to maintain the global structure intact but
allow local fluctuations.

(8) Potential for flexible SPC water model by Toukan and Rahman [4]. This water model includes some cross-
terms for intramolecular motion not included in the standard form of the force field (Eq. (1)).

2.2. Integration of the equations of motion

Several MD schemes and statistical mechanical environments are implemented in the package:

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 569

(1) Standard Newtonian NVE molecular dynamics with the Verlet Leap-frog algorithm [10]. If needed, the
temperature can be controlled by scaling the velocities. Of course, the temperature scaling is recommended
only in the initial states of those simulations where dynamical properties will be calculated.

(2) Constant-temperature Nosé–Hoover molecular dynamics [5] in a constant-volume cell.
(3) Constant-temperature–constant-pressure molecular dynamics [6] with isotropic cell fluctuations.
(4) Constant-temperature–anisotropic constant-pressure molecular dynamics [6], allowing the simulation cell

to fluctuate separately in the three cell coordinate directions.
In the case of flexible molecular models, the double (multiple) time-step algorithm by Tuckerman et al. [7] is

implemented. Forces due to fast intramolecular motion as well as due to fast nearest short-range (typically, within
5 Å) non-bonded interactions, are recalculated at every short time step, while the more slowly fluctuating internal
forces and those due to long-range non-bonded interactions are recalculated at each long time step. The ratio
between the short and long time steps is determined by the studied system. Typical values are 0.2 and 2.0 fs for
the short and long step, respectively. Our implementation of the multiple time step algorithm together with NVT
or NPT molecular dynamics follows closely the algorithms given by Martyna et al. [8]. If rigid molecular models
are used, or if the fast motion of the bond stretching needs to be frozen, a single time-step algorithm of leap-frog
type is applied, using constrained dynamics by means of the SHAKE algorithm [9].

2.3. Treatment of long-range electrostatic interactions

Two ways of treating the long-range electrostatic interactions are currently implemented in the program: the
Ewald method [10] and the reaction field [14]. In the Ewald method, the intermolecular Coulomb forces are divided
into long-range and short range components. The long-range part is calculated in the reciprocal space, while the
short-range part is treated alongside with Lennard-Jones forces. The convergence of each part is controlled by
parameters, specified in the input file. The total CPU time depends also on the cut-off radius used for calculation
of the electrostatic forces. The optimal choice of the Ewald sum convergence parameter leads to a scaling of the
CPU time as O(N3/2) [16]. Besides Ewald and reaction field, it is also possible to choose a plain Coulomb-law
term. This possibility is useful, for example, in vacuum simulations.

In the reaction field method, the electrostatic interactions are cut beyond a specified radius, and the long-range
correction from the polarization of the medium outside the cut-off sphere is calculated within the mean-field theory,
depending on the dielectric permittivity and ionic strength of the surrounding solution. The working formulas,
implemented in the package, are taken from the work of Tironi et al. [14].

2.4. Geometry of the simulation cell

The program currently supports four types of simulation cell geometries with full translational symmetry: cubic,
rectangular, hexagonal and truncated octahedron. Periodic boundary conditions together with the minimum image
convention are applied in all cases. The Ewald summation method is implemented for all four cell geometries.

3. Implementation

3.1. General organization of the program

The entire program source code consists of two INCLUDE files and a number of FORTRAN files (modules),
performing different tasks or groups of tasks. All the functions are extensively commented in the source files. The
first INCLUDE file, dimpar.h, defines the boundaries of the working arrays. Dimensions specified in this file should
be checked and edited if needed before the program is compiled, to fit the molecular system one is about to simulate
into the available RAM memory. The second INCLUDE file, prcm.h, contains definitions of data structures and

570 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

COMMON blocks. The COMMON blocks are the main way to transfer data between different subroutines in the
program. Other important FORTRAN files (modules, consisting of blocks of subroutines) in the program are:

(1) main.f – The main program unit taking care of the initial tasks. It reads the input data, sets up the data
structure and the initial state, and then starts the MD simulation.

(2) input.f – Reads the input data.
(3) setup.f – Sets up data structures, the internal units used by the program, and prepares the initial state of the

system.
(4) mdstep.f – Integrates the equations of motion.
(5) forces.f – Calculates the forces (including generation of the neighbor lists).
(6) • mpi.f – Subroutines needed in the communication between the nodes during a parallel execution. This

is the only module containing calls to MPI library.
• mpi_cray.f – Cray version of mpi.f.
• scalar.f – Sets up calls to dummy subroutines substituting the MPI calls for execution on a single-

processor computer.
(7) restart.f – Dumps or reads the restart file; dumps the trajectory file.
(8) aver.f – Collects the averages of various physical quantities and reports the final values at the end.
(9) tcf.f – A collection of subroutines for calculation of time correlation functions.

(10) service.f – A collection of procedures needed at various stages of molecular dynamics. Contains calculation
of temperature, molecular centers of mass, etc.

(11) util.f – A collection of some other auxiliary procedures
The general organization of the computations in the M.DynaMix package is presented in Fig. 1. The program

reads the main input file from the standard input (or from the file md.input in the case of parallel execution on some
machines). This file specifies the studied system and all the simulation parameters. Additionally, files describing
each molecular species (.mol files) are required. Their format is described in the README file included in the
distribution.

During the execution, the program periodically dumps a restart file containing the current configuration of the
system and all averages calculated to that moment. The program can be interrupted at any time and the execution
can be continued later from the restart file. There are separate restart files to keep the radial distribution functions
(RDF) and time correlation functions (TCF), if these quantities are calculated during the MD simulation. It
should be stressed that particularly the TCF calculation can become rather memory-demanding and slow down
the simulation.

The program produces an output file containing all the basic information and simulation results. The final
configuration of the system can be dumped in the so-calledxyz-format, compatible most of molecular viewers,
such as XMOL [17]. During the simulation, trajectories of the atomic coordinates can be dumped. The trajectory
files can be analyzed later, using a separate auxiliary analysis program called TRANAL.

3.2. Simulation setup

The start configuration of the simulated system can be taken from a specific input file (.inp) or generated
automatically by the program. In the input file one can alternatively specify positions of all the atoms in the
system, or positions of all molecular centers of mass (COM). If COM points are chosen, the atomic positions will
be generated from the local atomic coordinates specified in the .mol files.

If automatic generation of the start configuration is chosen, the COM positions of the molecules are distributed
on an FCC or cubic lattice. There is a possibility to place larger solute molecules at the center of the simulation
cell and to distribute other molecules (smaller solvent molecules) outside a sphere or cylinder containing the
macromolecule(s).

After generating the initial state, the program checks the configuration for any inconsistencies, reporting the
cases possibly producing too large forces (e.g., cases when two atoms are too close to each other or some of

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 571

Fig. 1. General organization of computations using the M.DynaMix package.

the bonds are too long). In some cases it is still possible to start the simulation from such a bad configuration
by specifying an option to cut all the forces exceeding a given level. Later, when the forces fluctuate at normal
amplitudes, this option has no effect, since it only chops off the very high amplitudes.

3.3. Force calculations

The most time-consuming part of the molecular dynamics simulations is the calculation of the forces due to
non-bonded interactions, which, in principle, requires a double sum over all the atom pairs, making it an O(N2)

problem. The application of a cut-off radius for the non-bonded interactions allows a considerable reduction of the
CPU time for calculation of atom-atom interactions, by effectively setting the interactions between the particles
separated by distances larger than the cut-off radius to zero.

To decide whether the forces between a given pair of atoms need be calculated or not can be difficult. In any case,
one still should know the distances between all atom pairs, or at least to have a list of atom pairs with distances

572 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

less than the cut-off (so-called neighbor-list). In liquids this list must be regularly updated. In some other schemes,
like the linked-cell (LC) method [18], the search for neighbors can be limited to the same cell and, because of
the symmetry properties of the pairwise forces, only to half of the nearest cells. This leads to an O(N) algorithm,
although a true O(N) algorithm is achieved only for very largeN . For a more “normal” size of systems (103–104

particles), a periodic (e.g., each 10 MD steps) update of the neighbor list by looking through all the atom pairs is
normally sufficient. Although the CPU time of this block scales as O(N2), the coefficient in front of it is small. For
example, in the case of 2000 H2O molecules (6000 atoms), this part in our program consumes roughly 5% of the
total CPU time.

3.4. Parallelization strategy

There are two popular main strategies to parallelize molecular dynamics programs, the “Replicated data” [18]
(RD) and the “Domain decomposition” [19] (DD). In the RD method all the nodes keep the positions of all the
particles in the system, while the calculation of different contributions to the forces is divided between the nodes
and done in parallel. One of the advantages of using the RD method is its relatively simple and efficient distribution
of the force calculations over the processors for nearly all types of force fields and molecular structures. An obvious
weakness of the RD approach is the relatively high communication cost from collecting the contributions to the
total forces and distributing the new particle positions again to all nodes at the end of each time step. However, these
two global communication operations are unavoidable in most general parallel MD schemes when simulations are
carried out on current distributed computer architectures.

In the DD approach, the particles are distributed between the nodes, with each of the nodes being responsible
for the particles in the corresponding subcell. The communication overhead is normally lower, compared to the
RD method, while other sources of overhead arise instead. These are for example due to monitoring the particle
movement across the subcells, implementing the Ewald summation of electrostatic interactions, applying the
Newton’s third law, etc. The LC scheme and also the DD method are most efficient when simulating systems with
short-range interactions on massively parallel computers, but for a parallel simulation of complex biomolecular
systems on computers with less than 100 processors, the RD method is normally to prefer. The RD scheme is
implemented in our parallel MD program.

3.5. Parallelization of specific parts of the program

3.5.1. Selecting the neighbors
To calculate the forces between the atoms, we first create a list of neighbors from all atom pairs in the system.

For efficient parallelization, the whole list of atomic pairs: (I,J= 1, . . .N, I<J) should be evenly divided between
the available nodes. The condition I<J is set to avoid double counting of the interactions. This condition, however,
makes it difficult to divide the atomic pairs equally between the nodes. To circumvent this problem, the following
scheme has been applied. All particles are divided equally between the processors. This is done in a loop like:

DO I=TASKID, N, NUMTASK

where TASKID is the node number and NUMTASK the total number of available nodes. For each I, we have an
inner loop over J with the following condition: I-J is even for I>J while J-I is odd for I<J. This way the atomic
pairs will occur uniformly distributed among the nodes, and each of them will only be treated once. Thereafter,
lists of the closest neighbors (r < 5 Å) and those further away (5< r < Rcut) will be calculated to be stored on
each node locally and later recalculated after about 10 long time steps.

3.5.2. Non-bonded interactions
The neighbor lists are used for calculation of the Lennard-Jones and real-space part of the electrostatic

contributions to the forces. Because each node treats approximately the same number of atom pairs, good load

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 573

balancing can be achieved. In addition, the use of local lists minimizes both the memory demand and the amount
of inter-processor communication. The same code for force calculations and integration of the equations of motion
is executed on each node, but with different data, taken from the local lists of neighbors. The great benefit of this
implementation is that it works well with any number of nodes, even with one single node, making the code equally
efficient on any conventional single-processor computer in sequential mode.

3.5.3. Ewald sum
Parallelization of the reciprocal part of the Ewald sum is straightforward. This contribution is expressed as a sum

over the reciprocal space vectors. Each node calculates the force contributions from its own group of reciprocal
vectors (fixed for each node), defined by the following DO-loop:

IBEG=NUMTASK-TASKID
DO IKV=IBEG,NKV,NUMTASK

where NKV is the total number of reciprocal vectors.

3.5.4. Intramolecular interactions
The intramolecular contributions to the forces due to the covalent bonds, covalent angles and torsional angles

can be calculated independently for each particular degree of freedom. At the very beginning of the simulation, all
the internal degrees of freedom are evenly distributed among the attached nodes. Each node receives a dedicated
list of bonds, angles and torsional angles for calculation of the intramolecular contribution to the forces, in the
same way as the reciprocal space vectors in the Ewald sum.

3.5.5. Summation of the forces
The different contributions to the forces acting on each atom, coming from interactions with other atoms, are

first accumulated separately on each node. For example, in the double time-step algorithm, the fast fluctuating
forces are accumulated into the arrays HX, HY, HZ, while the slower forces are added into the arrays GX, GY, GZ.
When the force calculations are completed, these arrays contain the contributions to the atomic forces calculated
on each particular node. To obtain the total force, acting on the given atom, contributions from all the nodes must
be gathered and summed up.

The summation of the forces is schematically shown in Fig. 2. All the forces acting on a given atom are
transferred to its dedicated node and summed up. The whole operation can be done by a single call of the MPI
subroutine MPI_REDUCE_SCATTER. Appendix I contains a fragment of the subroutine CM_ADDLF, taking
care of the summation of slow forces. We would like to point out that this operation is faster and uses fewer cycles

Fig. 2. Summation scheme for the forces. The total force, acting on each atom, is obtained as a sum of forces from each node. The grey areas
show the nodes receiving the resulting total force acting on given atoms.

574 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

than the perhaps more frequently used MPI_REDUCE operation, which sums up the data from all the nodes to
one single node. Moreover, using the above scheme, the integration of the equation of motion can be parallelized
efficiently without any additional communication cost.

3.5.6. Integrating the equations of motion
As a result of the MPI_REDUCE_SCATTER operation, each node receives the total forces acting on the atoms

it is hosting. The equations of motion are now solved locally for new positions and velocities. After completing the
entire MD step, the new atomic positions are broadcast to all other nodes to allow the force calculations in the next
MD step. We would like to add that, although the integration of the equations of motion consumes only a small
fraction of total CPU time, the parallelization of this part has an essential effect on the total speed-up when the
number of processors exceeds 16.

3.5.7. Pros and Cons of the current scheme
The parallelization scheme used in the program is insensitive to the details of the molecular structure of the

simulated system. The implementation of the parallel algorithms is designed to work on the atoms and their
coordinates only, regardless of their location. This allows us to write relatively simple and general code, suitable
for simulation of very different kinds of molecular systems, essentially without any additional data structures and
special operations for the parallelization. This gives an optimal scalability with the number of atoms and attached
processors. Although the program is parallelized, it runs equally well on single-processor computers without any
overhead. No unnecessary operations have to be executed when the program runs in the single-processor mode.

In spite of the simple and general structure of the code, the two global communication operations cannot be
avoided. These are the final summation of the forces and the broadcasting of the new coordinates to all nodes.
Currently, the overhead due to the communication becomes noticeable when the number of processors reaches
64 when we run our own applications on the parallel computers available to us. In practice, when using national
super-computer resources, shared by many other users, it is normally not easy to access more than 16 to 32 nodes
anyway, without needing to wait too long (our own experience). This range of number of nodes gives very good
scaling for simulations of molecular systems consisting of an order of 104 atoms.

3.6. Computation of physical quantities

A variety of physical properties of the molecular system can be calculated directly while the simulation proceeds.
Among these are the potential energy and different contributions contributing to it: long-range electrostatic
interactions and short-range Lennard-Jones energies, both divided between the different components of the
simulated system. Besides the intermolecular energies, all the internal energies are also calculated, including the
average values of the bond lengths and angles. The pressure is calculated both from the atomic and molecular
virials. In addition, the pressure can be determined along each coordinate axis, an important piece of information in
anisotropic and ordered systems. Intermediate average values of all these quantities are calculated during specified
time intervals and saved in the restart file. When the simulation is finished, all the final averages are calculated. The
statistical errors of the final average values are determined from the variance of the intermediate averages.

Other properties, possible to calculate during the simulations, are the radial distribution functions (RDF) and time
correlation functions (TCF). RDFs can be calculated for all pairs or for a selected set of different atom pairs. TCFs
are calculated for each molecule type. Twelve types of TCF may be calculated: COM velocity of the molecules,
angular velocity, dipole moment (if any) and its second Legendre polynomial, reorientational TCF defined by an
arbitrary vector attached to the molecule and its second Legendre polynomial. The attached vectors of interest
are normally those along some covalent bond, in-plane or out-of-plane of a planar molecule, etc. Finally, both
the velocity and angular velocity TCFs can be calculated in the principal axis system of the molecule or in the
laboratory coordinate system.

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 575

Calculation of some of physical quantities during the simulation run may require additional memory, or they may
slow down the execution, especially if the program is running on a large number of processors. This is particularly
true for the TCF calculations, but also for the RDF calculations as well as the average values and energies of
covalent bonds, angles and torsional angles. The on-flight calculations of these properties can be turned off, and all
the physical properties of the simulated system can be calculated afterwards while analyzing the trajectory files.

4. How to use the program

4.1. Compilation of the program

Before compiling the program, users may need to change the size of some of the working arrays, defined in the
dimpar.h include file. This file also contains information about the purpose of the parameters and when one has to
change them. Several pre-determined copies of this include file are available in the distribution, designed to run
systems of different sizes and types.

The parameters defining array boundaries also define the total amount of required RAM memory. One of the
most memory-demanding arrays is the one holding the neighbor lists containing the non-bonded atomic pairs
within the cut-off distance. Its size is defined by the product of the parameters NTOT (maximum number of atoms)
and NBLMX (maximum number of neighbors for each atom within the cut-off radius). Since the list of neighbors
is distributed among the available nodes, this parameter can be decreased and optimized in the case of a parallel
execution.

Yet another memory-consuming parameter is MAXCF, defining the time interval (number of time points) for the
TCF calculations. This parameter can be set to 1 if no TCF calculations will be carried out during the simulations.

The array containing the intermediate averages of different physical quantities may also require a considerable
amount of memory. Its size is NRQS∗ LHIST, where NRQS is the maximum number of different averages to be
calculated and LHIST is the maximum number of time intervals to calculate the intermediate averages. This array
may grow very big for large macromolecules, because of all the bond lengths, covalent and torsional angles are
calculated and stored in this array. Accumulation of these quantities can be switched off by specifying an additional
parameter, noaver (see files MD.input and Extra_param in the package distribution).

Each time the program is started it checks the allocated array boundaries based on the information it obtains
from the input data, and it stops at every inconsistency, trying to tell how to fix the problem. If this happens, the
corresponding parameters must be corrected in the dimpar.h file, and the program has to be recompiled.

Included in the program distribution are several Makefiles for different common computer architectures. If none
is directly applicable, one should choose the most suitable one and edit it if necessary. Because the code uses only
standard Fortran 77 statements, without any external libraries (except the MPI library for parallel execution), the
only thing to do in most cases is to choose a proper compiler name and optimization parameters from the compiler
manual. Sometimes problems may arise due to calling the CPU time counter (file cpu_time.f). Because accessing
the CPU time is not a standard function in Fortran, this file may need some editing depending on the computer and
compiler. The CPU time counter can always be turned off just by commenting out all the executable lines inside
this particular file.

Another thing which may need adjusting is the linking of the MPI library. On most parallel computers the script
mpif77 should do the proper work. We also would like to mention that for the parallel Linux and Cray versions,
a modified version of the input.f is used (generated after applying the file input.patch). This modified version
then reads the program input from the file md.input rather than from the standard input as the normal version
does. This is because some problems are encountered while reading the standard input on these particular parallel
architectures. The name of the resulting executable file ismd for single-processor computers andmdpfor parallel
computers.

576 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

4.2. Preparation of the force field files

For each molecule type a specific topology file must be created, describing molecular structure and parameters of
the force field. The file must have the extension .mol. The format of the .mol files is described in the documentation
file README. The .mol files contain information about relative coordinates of all atoms,q , σ andε parameters for
all atoms, a full list of covalent bonds, angles and torsional angles with the corresponding force field parameters,
and some additional optional force field parameters. Some examples of .mol files are given in themoldbdirectory.
These files can be prepared or edited manually, which also provides good flexibility in changing force field
parameters. For example, the Urey–Bradley term for covalent angles (which is included in the CHARMM force
field) may be introduced as an additional bond, connecting the first and third atoms defining the covalent angle.

For large molecules, the procedure of writing .mol files may become rather tedious. The utilitymakemolis
written to simplify this process. This utility creates a .mol file from two separate input files. One is a “simple
molecular file” (.smol), containing only the atomic coordinates, corresponding atomic charges, the chemical atomic
type and a list of bonds. The second one contains the force field parameters for the different chemical atomic types.
This utility program goes through the list of atoms in the .smol file and finds first the Lennard-Jones parameters
for each atom, and then it reads the bond list and inserts the parameters for covalent bonds. Finally, it generates
lists of covalent angles and torsional angles from the bond list and finds the correct force field parameters for them,
creating the final .mol file.

4.3. Preparation of the input file

A sample input file, MD.input, comes with the distribution (see Appendix II). This file is extensively
documented, and can be even used as a short manual for preparing the input file. Below are given a few more
detailed explanations to some of the parameters.

The composition of the system is defined by the number of molecule types, the names of molecules of each type
and the number of molecules of each type. The internal molecular structure and the force field are determined in the
.mol files read separately by the MD program. Only a few additional parameters for adjusting some features in the
force field can be specified through the input file, for example, the scaling of the “1–4” intramolecular interactions.

The type of the molecular dynamics algorithm is determined by the flags “Constant temperature”, “Constant
pressure”, and “Constrained dynamics”. If the last of these parameters is set to .true., then the simple leap-frog
algorithm with single time-step and the constrained dynamics will be applied. The constraints are applied on all
covalent bonds specified in the .mol files. If the parameter “Constrained dynamics” is .false., then the double time-
step algorithm will be applied. This algorithm can be converted into single time-step (Leap-frog) by setting the
ratio between short and long time steps equal to one.

One of the features requiring some special care in setting up a simulation is specifying the parameters for Ewald
summation of the electrostatic interactions. Normally, three parameters affect these calculations: the two cut-off
radii in the real and in reciprocal spaces, and the convergence parameter (denoted asα) regulating the convergence
of both the real and reciprocal parts of the Ewald sum. In the program, these parameters are set in the following
way. First, the cut-off radius in real space,Rcut, has to be specified explicitly. Then, the convergence parameterα

is specified as the productαRcut. Note that this product entirely determines the precision of the real-space part,
erfc(αRcut), which must be small enough. The third parameter, FEXP= (kmaxπ/αLbox)

2, determines the value of
the cut-off in reciprocal space,kmax, and thereby the precision of the reciprocal part of the Ewald sum, which is
equal to exp[−FEXP]. Reasonable precision of the calculated total electrostatic energy is achieved atαRcut= 3
and FEXP= 9. If the required precision is fixed both for the real and reciprocal parts of the Ewald sum, the only
remaining parameter to vary is the cut-off radius of the real-space part of the Ewald sum. A small value for this
parameter reduces the computation time for the real-space term but increases it for the reciprocal-space term, and
vice versa. An optimal value of the cut-off radius may be set empirically from the condition that the CPU time
for the real-space calculations is roughly equal that for the reciprocal-space calculations. The execution time of

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 577

different blocks in the program can be seen in the output. The optimal value ofRcut increases slowly asL1/6 with
the box size. We recommend increasingRcut gradually from 13 Å for the box length 30 Å, to 15 Å for the box
length 60 Å (see details on optimization of the Ewald sum parameters in Ref. [16]).

There are options in the program to completely freeze the positions of the atoms of some molecules, or just to tie
them loosely by placing some of the atoms in the molecules in harmonic potentials with a given effective radius.
These features may be useful at various stages while simulating macromolecules.

Normally, when restarting the program, it reads the temperature and box size values from the restart file and
simply ignores the values specified in the input file. However, if the flags in the input file, “Change the temperature”
or “Change the density” are set to .true., the corresponding properties will be changed. The temperature will be
changed by scaling all the velocities, and the density (i.e., the box sizes) by scaling the distances between molecular
COMs uniformly.

Some of parameters are not specified in the input file by default. They can be introduced, if needed, after the
line “Extra parameters”. The line “add< n >” says that< n > additional parameters follow. These parameters
are introduced by a keyword followed by the parameter value(s). A detailed description of them is given in the
file ExtraParam, included in the distribution. They describe additional features introduced in the latest version
of the package. Additional new features, which will eventually appear in future releases of the program, will be
introduced in the same way. Such a scheme allows us to retain the same format of the input file while upgrading the
program and introducing new possibilities. Among a few additional parameters we wish to mention flags signaling
ASCII format of the restart file (default is a binary format) and an option to abolish the calculation of average bond
lengths and angles with corresponding energies. The first one is useful when the simulation is continued on another
(not binary compatible) computer, while the second is used just to save memory.

Possible format errors in all input files are detected by the program and signaled to the user by specifying the
file and the line number where the error is encountered.

4.4. Start-up hints

Preparing a start configuration for the molecular system may sometimes be a bit tricky. This is usually not a
problem for systems consisting of small molecules, in which case it is sufficient just to specify in the input file
“start from an FCC lattice” at a given temperature and density. However, if large molecules, especially polymers,
are included, it may sometimes become very difficult to prepare initial configurations so that any two atoms are
not too close to each other, which can cause very large forces, enough to disintegrate the whole system (sometimes
these would be enough to blow the whole of mother Earth to pieces). There are several possibilities to deal with
this problem, either alone or combined.

(1) An option available is to place any large solute (fragment of DNA, protein, etc.) in a cylindrical or spherical
cavity of a specified radius at the center of the simulation cell. The solvent, normally consisting of much
smaller molecules can then be distributed on a lattice around the cavity containing the large solute.

(2) One can always start the simulation at a very low density (large box size), which essentially corresponds to
gas phase conditions, thereby reducing the probability of overlapping atoms during the automatic generation
of the initial configuration. Then, in sequences of short runs (100 steps per run is normally enough) the
density can gradually be increased to a more normal level. The molecules have time to adjust themselves
during this procedure.

(3) The parameter “Cut the large forces” may be set to .true.. In this case, any total force acting on any atom
growing above a specified level is simply cut to this level while maintaining its direction.

(4) The initial coordinates of all the atoms, or alternatively all the molecular COMs can be given in a separate
input file (with extension .inp), if a reasonable initial configuration is known from other sources. This file
contains the Cartesianx-, y- andz-coordinates of each atom, one line per atom (or molecular COM). Lines,
beginning with “#” can be given in the coordinate file as comments for documentational purposes.

578 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

Moreover, it is recommended that the simulation is always started at constant volume (parameter “constant
pressure” set to .false.), because a non-equilibrium initial configuration may correspond to enormous pressures.
Sometimes the Nosé constant-temperature algorithm should be turned off at start-up (set “constant-temperature”
to .false.). In the latter case, the temperature may be regulated by simple velocity scaling. If the actual temperature
deviates from the target value by more that some specified difference, the velocities of all the atoms are scaled to
provide the proper temperature.

4.5. Running the program

The program can be started from the following command line:

md< md.in> md.out

where md.in is the primary standard input file (see Section 4.3) and md.out is the program’s standard output file.
In the case of parallel execution on computers running Linux, or on a Cray, the input is always taken from the

file md.input, and should not be specified in the command line.
The program starts, e.g.:

mpirun− np 2 mdp>md.out

This command above is used to start a job on a double-processor Linux computer. The exact form of the
command to start a parallel job may differ on different architectures.

During the execution, the program regularly dumps a restart file after a specified number of steps. The program
may be interrupted at any time and then restarted from the restart file without losing any calculated information.
The program may also be started in the “check only” mode. In that case it only reads the restart file, calculates the
final averages from the intermediate averages and reports the results, without running a simulation. The moment
(time origin) when the final averaging is started can be changed in this run. In this way, theequilibrationpart and
theproductionpart can be specifiedafter the simulation.

The program can also be set to dump the trajectories of all the atoms in the system, or just of those belonging
to molecular types specified in the input file. The trajectory may be dumped either in a binary or in an ASCII
(XMOL [17] compatible) format. The whole trajectory is stored in separate files with the extensions sequentially
numbered:.001, .002, .003, The parameters defining how often configurations are dumped, and the number
of configurations in each trajectory file, can be specified in the input file. The dumped trajectories may be used
later to analyze results after the simulation is finished. The format of the binary trajectory file can be seen from
subroutine TRACE in the restart.f file.

4.6. Post-analysis of the trajectories

The module TRANAL can be used to extract and calculate additional properties of the simulated system
calculated from the trajectory files. The main block of the module reads the trajectory files in binary format, and
then calls different subroutines, performing calculations of different properties. At present, the following properties
can be calculated from an analysis of the trajectory files:

(1) Spatial distribution functions of an atom density in a local coordinate system attached to a given molecule.
Output of SDF density may later be visualized with the GOpenMol package [20].

(2) Three-body correlations (more exactly, density distribution of a third particle around two particles separated
by a specified fixed distance).

(3) Radial distribution functions.
(4) Time dependence of the root-mean-square displacement (RMSD) of molecules and the self-diffusion

coefficients.
(5) Residence (life) times of specified atoms to be within a certain distance around another atom.

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 579

(6) Population distribution of specified torsion angles.
Users can easily add their own subroutines to calculate other properties, and put them into the main block of the

TRANAL module, after the place where the atomic coordinates are read.
The TRANAL module is not included in the distribution but can be obtained from the authors on request.

5. Benchmarks and testing

The M.DynaMix package has been used by our group for several years as the main computer simulation package.
It has been used in simulations of very different molecular systems. To give some idea of its applicability we may
mention studies of ionic water solutions [21], double-helix DNA fragment surrounded by water and ions [22],
nucleotides and nucleoside salts in solution [25], dicarboxylic acids in solution [24],t-butyl alcohol in aqueous
solution [26], disaccharides in water and water–DMSO mixture [23].

Some benchmark results concerning the program performance are given in Table 1. The simulated systems are:
(1) A periodic fragment of double helix B-DNA in ionic aqueous solution: DNA (635 atoms), 1050 waters and

40 sodium and 20 chloride ions (3845 atoms totally) [22].
(2) An NaCl ion solution: 20 Na+, Cl− ion pairs and 1960 water molecules, 5920 atoms total [21].
(3) A lipid bilayer. Two similar systems differing only in the size: (a) 64 DPPC lipid molecules, 50 atoms each

(united atom GROMOS force field), and 1472 waters, 7616 atoms in total and (b) a 4 times larger fragment
with 256 DPPC phospholipids and 5888 water molecules, 30464 atoms totally.

These molecular systems are very different in character and composition:
(1) a large macromolecule surrounded by the solvent,
(2) a homogeneous solution of small molecules,
(3) an anisotropic ordered system consisting of a large number of larger molecules in water as solvent.
The simulations were performed on an IBM SP2 parallel computer with 150 MHz RISC 6000 processors (at the

Royal Institute of Technology, Stockholm) and on the departmental Linux PC cluster of Beowulf type built from
fourteen 400 MHz Pentium II processors.

The speed-up of the program depending on the number of processors is displayed in Fig. 3. The program shows
excellent scaling properties for all three molecular systems running on on up to 32 processors. On our PC cluster
the speed-up is somewhat worse because of the lower communication speed offered by the standard 100 MBits
Ethernet cards.

Table 1
CPU time (in min) for 1 ps simulation of 3 different systems on IBM SP2 depending on number of processors. Box sizes and cut-off distances
Rcut are given in Å. Double time step 0.2/2 ps was used for systems 1 and 2; for system 3 constrained dynamics (SHAKE algorithm) with time
step 2 fs was applied

Nodes

System Num. atoms Box sizes Rcut 1 4 8 16 32

IBM SP2

1. DNA 3825 33×33×34 13 60 16 8.5 4.5 2.8

2. Ion solution 5920 39×39×39 14 110 29 14 8.5 5

3. lipid bilayer 7616 44×44×64 14.5 150 38 22 12 6.5

Pentium II PC cluster

2. Ion solution 5920 39×39×39 14 97 28 18

3a. lipid bilayer 7616 43×43×68 14.5 124 35 23

3b. “ 30464 86×86×68 16 805 210 115

580 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

Fig. 3. Effective speed-up of computations on different number of processors of IBM SP2 compared to single-processor computations. For
details on the simulated system, see the text.

Acknowledgements

This work has been supported by the Swedish Council for Natural Sciences (NFR) and by a grant from
the Swedish Strategic Foundation (SSF). The Center for Parallel Computers (PDC) in Stockholm, The High
Performance Computer Centre North (HPC2N) in Umeå and the National Supercomputer Centre (NSC) in
Linköping are gratefully thanked for generous allocations of computing time.

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 581

APPENDIX I

A fragment of the parallel code performing the force summation.

*
* 5.1 Sum up forces
* -----------------
C
C NAB(J) is the first atom for which node J is responsible
C NAE(J) is the last atom for which node J is responsible
C NABS(J) = NAB(J) - 1
C NAP(J) = NAE(J) - NABS(J) is the number of atoms for node J
C (these are set in module UNITS, file setup.f)
C

DO J = 0, NUMTASK-1
I0 = 3*NABS(J)
I1 = I0+NAP(J)
I2 = I1+NAP(J)

C Put X,Y,Z projections into a single buffer
DO K = 1,NAP(J)

I = NABS(J)+K
BUFF(I0+K) = GX(I)
BUFF(I1+K) = GY(I)
BUFF(I2+K) = GZ(I)

END DO! of K
END DO! of J

C
C Perform global summation
C

call MPI_REDUCE_SCATTER(BUFF,BUF2,NAP3,MPI_REAL,
+MPI_SUM,MPI_COMM_WORLD,ierr)

C Return results from buffer BUF2 to forces array GX
DO J = NAB(TASKID),NAE(TASKID)

I = J-NABS(TASKID)
GX(J) = BUF2(I)
GY(J) = BUF2(I+NAP(TASKID))
GZ(J) = BUF2(I+NAP(TASKID)*2)

C Contribution to molecular virial coef.
M = NNUM(J)
WIRS = WIRS-GX(J)*(SX(J)-X(M))

+ -GY(J)*(SY(J)-Y(M))
+ -GZ(J)*(SZ(J)-Z(M))

END DO! of J

582 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

APPENDIX II

A sample standard input file

Sample input file for the MD program, v. 4.3
#
Simulated system consists of 246 flexible SPC water molecules,
and 5 Na+ Cl- ion pairs
#
Lines beginning with "#" are comments used for documentation
Note, the comments are given before the corresponding parameters.
#
This file can be used as an input (see directory sample for
short version of the input file)
#
#
Output control parameter:
Suitable values 2-10. The less number, the less you see of the output.
Parameters higher than 7 are used mostly for debug purposes

5
#
Base file name for output files:
Other files requested or created by the program will have this name with
various extensions

5nacl
#
Path to the molecular database:
This directory contains the *.mol files which describe the molecular
structure and the force field

./moldb
#
The program creates and updates periodically a restart file containing
the current configuration of the system and the calculated averages.
The program can be interrupted any time and continued later from the
restart file without loosing any information.
If the "Check only" parameter is true, the program does not start a
simulation run. If it is a new run, the program only checks the input.
If it is continuation of the old run, the program gives the so far
accumulated results.
#
Read from Dump Check Zero counter
the restart file? a restart file? only? of cpu time?

.f. .t. .f. .t.
#
The type of statistical MD ensemble. "Anisotropic NPT" means
a separate pressure/volume control in each direction. Use this
option only if the system is really anisotropic (a fragment of
DNA, membrane, liquid crystal, etc). Note, that for "constant
pressure"=.t. also the "constant temperature"
must be .true. (God knows what an NPE ensemble is !!!).
Constant temperature? Constant pressure? Anisotropic NPT?

.t. .f. .f.

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 583

#
Number of molecular types:

3
#
Types of molecules (models)
The database directory (specified above) should contain
the following files:
H2O.mol, Na+.mol, Cl-.mol
See the README file about the format of the .mol files

H2O Na+ Cl-
#
Specify for each molecular type:
The number of molecules of each type:

246 5 5
#
Non-bonded intramolecular interactions:
Calculate the intramolecular potential
(LJ and electrostatic)
for non-bonded atoms, separated by more than 3
covalent bonds. Normally, it should be .true.
Although unimportant for small molecules)

.t. .t. .t.
#
1 - 4 intramolecular interactions:
Calculate the L-J and electrostatic terms for 1-4 intramolecular
(i.e. separated by 3 covalent bonds) interactions

.f. .f. .f.
Scaling factors for 1-4 L-J interactions
These are 0 in AMBER, 1 in CHARMM and 0.25 in GROMOS
Not important for small molecules

1. 1. 1.
Scaling factor for 1-4 electrostatic interactions

1. 1. 1.
#
Intramolecular potential type
In this case it should be 0 for all molecules except the water.
For water 1 is "harmonic" and 2 "anharmonic" flexible SPC water
(It tells the program to use a special subroutine to handle anharmonic
bond stretching potentials)

2 0 0
#
Rules for an initial box size / density:
- If one of the box side lengths is zero,
the actual box size (cubic box)
will be defined from the density.
- If the density is also zero, the program runs a"vacuum
simulation". Set the Ewald parameters (below) to 0 in the case of
a vacuum simulation.
- If all the three box sizes are not zero,
they will define initial box size
and shape, and so the actual density
#

584 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

Cell type:
0 - rectangular
1 - truncated octahedron: cube of side BOXL centred in 0,0,0 with
truncated corners: |x|+|y|+|z| < 0.75*BOXL
2 - hexagonal along Z axis
#
temperature (K) density (g/cm**3) pressure (atm)

298. 1.03 1.
box size (\AA) cell type

0. 0. 0. 0
#
This is the long time step
Time step (s) Small steps in one long time step

2.d-15 10
#
Total (long) Steps for interme- take averages dump restart file
MD-steps diate averaging each .. steps after .. steps

10000 1000 1 500
#
Nose thermostat parameters: Meaningful in constant-energy
simulations (if const. temp. = .f.):
Thermostat (fs) Barostat (fs) Simple velocity delta T (K)
scaling?

30. 700. .f. 20.
#
Rcutoff sets the cut-off radius for the L-J and Real-space
electrostatic forces
Interactions inside the Rcut-fast are
recalculated each short time step,
Interactions between Rcut-fast and
Rcutoff each long time step
#
Rcutoff(\AA) Rcut-fast forces check neighbors after .. steps

10. 5. 10
#===
Treatment of electrostatic interactions:
#
Ewald parameters:
alpha and fexp are set from the following conditions:
erfc(alpha*R) = required precision of the real-space Ewald
exp(-fexp) = required precision of reciprocal-space Ewald
A rule of thumb:
alpha*R fexp (m/s**2)

3.14159256 9.81
If alpha*R above is negative -
the reaction field method is used with
-alpha*R as dielectric permittivity,
fexp is the Debye screening length in \AA
(setting the Debye length to 0 means infinite
Debye length,i.e non-conducting solution)
If alpha is set to zero (exactly: between -1 and 0),
no special treatment of

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 585

the electrostatic interactions (simple spherical cut-off)
#
Be careful when playing with these parameters
and try to understand what you want to do.
Unreasonable values will result in a funny
behavior of the system or too long computation time.
#
#===
Which of the molecules move:
.f., means the molecules are fixed, but still
interact with other molecules.

.t. .t. .t.
#
recalculate the list of intramolecular interactions?
can be set to .f., if you have a large molecule with
a stable conformation
#

.t.
#
If true, constrained dynamics with the SHAKE
algorithm for specified molecular specii will be used.
It will keep all the bond lengths constant.
No double time step algorithm will be used in this case
which molecules considered as rigid (1/0)
#
Constrained dynamics? tolerance param which molecule types are
(not in effect constrained?
if false) (1 - constrained; 0 - flexible)

.f. 1.d-4 1 1 1
#
Initial state (from -1 to 4)
Values:
-1 take the initial center-of-mass coordinates of the
molecules from the *.inp file
0 take the initial atomic coordinates
from the *.inp file
/* The .inp file should be written in a free
x y z format (one atom per line)
The order of atoms and molecules:
molecular type1 molecular type 2
mol1 mol2 mol3 mol1 mol2 mol3
at1 at2 at1 at2 at1 at2 at1 at2 at1 at2 ... */
1 Start from an FCC lattice
2 Set a cylindrical hole along the z-axis.
Place the molecules marked ‘‘1’’
on the line below into the hole according initial
coordinates in .mol file, and distribute others out the hole
3 The same but for a spherical cavity
4 Start from a cubic lattice
| set velocities to 0?
| (if .false., Maxwell distribution at
| startup or as it is at restart)

586 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

1 .f.
#
Parameters for above in cases 2, 3 (specify 0 or 1)

0 0 0
#
If this parameter is set to .t., the atoms
described in the file "fixed.atoms" will be
put in a harmonic potential of this radius:
Radius of a hole Keep specified Allowed File
for large molecules configuration? deviation? name

10. .f. 3. fixed.atoms
#
If you want to change the temperature or density after the restart.
Change temperature at restart? Change density?

.f. .f.
#
When to start the final averaging
Final averaging after .. Dump
intermediate averagings XMOL config. file?

6 .f.
#
This only makes sense if you have to start
from a very bad configuration
If the total force acting on an atom
exceeds some high level defined by the given
level, the force (in the internal units) will be cut to this level
Cut large forces? level (this is a reasonable value)

.f. 1.d-4
#
RDFs have a separate restart file with an extension .rdf
Calculate RDF? Dump RDF restart file? Read restart RDF file?

.t. .t. .f.
#
RDF for all sites?
(if .f., they should
be specified below) Cutoff-RDF(\AA) Resolution of RDFs

.f. 10. 200
#
dump trajectories (0/1/2)? number of config. in a trajectory
0 - no trajectory file. Trajectory files have extensions
1 - unformatted files .001, .002, ...
2 - "XYZ" format interval(s)

0 1.d-14 500
dump trajectory of molecules (1/0):

1 1 1
#
TCF calculations

Attention! Tcf calculations are currently
NOT parallelized and may slow down parallel
simulations quite considerably.
#

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 587

TCFs have a separate restart file with extension .tcf
NSTEG is number of points for calculation TCF
JUMP - number of MD steps between the points for calculation of tcf.
calculate tcf? restart tcf? dump tsf? NSTEG JUMP

.f. .f. .f. 200 5
#
which of 12 tcf calculate (0/1/2):
12 types:
1 - velocity autocorrelations
2 - angular velocity autocorrelations
3 - 1 order Legendre polynom for dipole moment
4 - 2 order Legendre polynom for dipole moment
5 - 1 order ... tcf defined by vector below
6 - 2 order ... tcf defined by vector below
7 - X principal component of the velocity TCF
8 - Y principal component of the velocity TCF
9 - Z principal component of the velocity TCF
10 - X principal component of the angular velocity TCF
11 - Y principal component of the angular velocity TCF
12 - Z principal component of the angular velocity TCF
if "2" specified for tcf 7-9 or 10-12, then tcf projections are
calculated in molecular principal coordinate system; otherwise
they calculated in laboratory coordinate system

1 1 1 1 1 1 2 2 2 0 0 0
#
unit vectors for the reorientational tcf
this vector is defined by 2 selected atoms on each molecule

1 1 1
2 1 1

#
Other optional parameters
if line "add <n>" is omitted, no optional parameters
Description of optional parameters is given in file Extra_param
#
add 0
The total number of RDFs to be calculated.
10
RDFs are defined by their "global" site numbers
First molecule, type H2O has 3 sites with site numbers 1, 2, 3
Second molecule Na has one site with number 4
and third molecule Cl has one site with number 5
O - O
This means RDF between sites 1 and 1, i.e. O atoms on H2O molecule

1 1
O - H
symbol & followed by a number means that these RDF will be averaged
(in this case: two hydrogens atoms (atoms 2 and 3 in H2O molecule)
are equivalent)
&2
1 2
1 3
O - Na

588 A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589

atoms of the next molecular type (Na) have site number 4, and Cl is 5.
1 4
O - Cl
1 5
H - H
&3
2 2
2 3
3 3
H - Na
&2
2 4
3 4
H - Cl
&2
2 5
3 5
Na - Na
4 4
Na - Cl
4 5
Cl - Cl
5 5

A.P. Lyubartsev, A. Laaksonen / Computer Physics Communications 128 (2000) 565–589 589

References

[1] S.J. Weiner, P.A. Kollman, D.T. Ngyuen, D.A. Case, J. Comput. Chem. 7 (1986) 230.
[2] A.D. MacKerell, J. Wiorkiewicz-Kuczera, M. Karplus. J. Amer. Chem. Soc. 117 (1995) 11946.
[3] W.F. van Gunsteren, H.J.C. Berendsen, Groningen Molecular Simulation (GROMOS), Library Manual (Groningen, 1987).
[4] K. Toukan, A. Rahman, Phys. Rev. B 31 (1985) 2643.
[5] S. Nosé, Mol. Phys. 52 (1984) 255.
[6] G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101 (1994) 4177.
[7] M. Tuckerman, B.J. Berne, J. Chem. Phys. 97 (1992) 1990.
[8] G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Mol. Phys. 87 (1996) 1117.
[9] J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput. Phys. 23 (1977) 327.

[10] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
[11] B. Smit, D. Frenkel, Understanding Molecular Simulation (Academic Press, San Diego, 1996).
[12] N.L. Allinger, Y.H. Yuh, J.-H. Lii, J. Amer. Chem. Soc. 111 (1989) 8551.
[13] P. Ryckaert, A. Bellemans, Chem. Phys. Lett. 30 (1985) 123.
[14] I.G. Tironi, R. Sperb, P.E. Smith, W.F. van Gunsteren, J. Chem. Phys. 102 (1995) 5451.
[15] M. Tuckerman, B.J. Berne, G.J. Martyna, J. Chem. Phys. 97 (1992) 1990.
[16] D. Fincham, Molecular Simulations 13 (1994) 1.
[17] XMol, v.1.3.1 (Research Equipment Inc., Minnesota Supercomputer Center, Inc.).
[18] W. Smith, Comput. Phys. Commun. 62 (1991) 229.
[19] D. Fincham, Mol. Simul. 1 (1987) 1.
[20] http://laaksonen.csc.fi/gopenmol/gopenmol.html.
[21] A.P. Lyubartsev, A. Laaksonen, J. Phys. Chem. 100 (1996) 16410.
[22] A.P. Lyubartsev, A. Laaksonen, J. Biomol. Struct. Dyn. 16 (1998) 579.
[23] A. Vishnyakov, G. Widmalm, J. Kowalewski, A. Laaksonen, J. Amer. Chem. Soc. 121 (1999) 5403.
[24] J.A. Nilsson, A. Laaksonen, L.A. Eriksson, J. Chem. Phys. 109 (1998) 2403.
[25] K. Kulinska, T. Kulinski, J. Stawinski, A. Laaksonen, J. Biomol., Struct. Dyn. 15 (1998) 987.
[26] P.G. Kusalik, A. Lyubartsev, D. Bergman, A. Laaksonen, submitted (1999).

